If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12d^2-31d=0
a = 12; b = -31; c = 0;
Δ = b2-4ac
Δ = -312-4·12·0
Δ = 961
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{961}=31$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-31)-31}{2*12}=\frac{0}{24} =0 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-31)+31}{2*12}=\frac{62}{24} =2+7/12 $
| 18=2k×12k-8k | | 140-5x=134-2× | | 8x-7+67=180 | | 4y/3-7=2/5y | | 4y/3-7=2/5y | | 4y/3-7=2/5y | | 4y/3-7=2/5y | | 5×+13+x+23=180 | | 5×+13+x+23=180 | | 5×+13+x+23=180 | | 5×+13+x+23=180 | | 5×+13+x+23=180 | | |5x|+30=40 | | (2x+-6)+x=39 | | (2x+-6)+x=39 | | (2x+-6)+x=39 | | (3x-2)/6-(2x+7)/9=0 | | (3x-2)/6-(2x+7)/9=0 | | (3x-2)/6-(2x+7)/9=0 | | 8x-10-9x=-8×4 | | v–5=12(v+10) | | v–5=12(v+10) | | 5x+1=-4-3x | | 5x+1=-4-3x | | 5x+1=-4-3x | | 5x+1=-4-3x | | 5x+1=-4-3x | | 5x+1=-4-3x | | (2x+5x)+12=68 | | (2x+5x)+12=68 | | -x+3=-4+x | | 2y+10=25-3y |